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A formulation of entropy production is given with the aid of relative entropy in 
the nonlinear response theory of a quantum dynamical system. It allows a 
natural interpretation of the quantity in terms of familiar thermodynamic 
notions, such as force and response current conjugate to it, without sacrificing 
the full nonlinearity in the perturbing force. For the understanding of dis- 
sipativity as positive entropy production, the stationarity of states and coarse 
graining of time scale turn out to be essential, which are implemented by some 
time averaging procedures involving almost periodic external forces. Finally, it is 
shown that the obtained result reduces, in the linear response regime, to the 
power dissipation appearing in the well-known fluctuation-dissipation relation. 

KEY WORDS:  Entropy production; relative entropy; nonlinear response 
theory; almost periodic perturbation. 

1. I N T R O D U C T I O N  

A statistical mechanical description of irreversible processes was formulated 
by Kubo in 1957, (1) which goes by the name of linear response theory. ~2) 
This was motivated in part by the prior work of Callen and Welton, (3) who 
proposed a quantum mechanical perturbative calculation with the external 
forces exerted on a dissipative system. They pointed out a general 
relationship between the power dissipation induced by the perturbation 
and the average of a squared fluctuation of the current of the system in 
thermal equilibrium. This is a prototype of the fluctuation-dissipation 
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theorem, which was discussed most comprehensively by Kubo sub- 
sequently. 

A characteristic feature of the theory was that it abandoned the use of 
kinetic equations by adopting the formalism of Hamiltonian dynamics. 
Thus, this has sometimes led to a question about the origin of irrever- 
sibility in the description, as exemplified by van Kampen's criticismS4): He 
argued that the macroscopically observable linearity of irreversible 
phenomena must be entirely different from the linearity in the logic of the 
linear response theory and that the irreversibility in the latter description 
was provided virtually through the procedure of the linearity 
approximation in it. However, Kubo et al. ~2~ replied to this criticism by 
claiming the general legitimacy of interchanging the two procedures in 
computing transport coefficients, namely, stochastization (randomization) 
and linearization: Both linear response theory and kinetic-equation theory 
have a wide range of common applicability that should stem from this 
legitimacy. 

Although nowadays there is no doubt about the validity and utility of 
the linear response theory, the above-mentioned issue does not seem to be 
settled yet. This motivates us to seek a better understanding of the 
problem. The point of investigation can be specified by the following two 
questions: 

1. Would the response theory, extended beyond the linear regime, 
still be valid for discussing nonequilibrium dissipative phenomena? 

2. How can the dissipation be understood in such a response theory 
from the standard thermodynamic viewpoint? 

To examine the above questions in more detail, we investigate the 
dynamical change of a quantum statistical state by adopting the framework 
of C*-dynamical systems ~5) with time-inhomogeneous perturbations. More 
explicitly, we ask how a state ~0 of a C*-algebra 9.1 changes when it 
is driven by a time-dependent external force X(t) in the perturbing 
Hamiltonian 

/41(0 = - A .  X(t)  (1.1) 

A = ( A 1 ,  A2,...,Ar), Ai~9.1 

As is the case in the Kubo formalism, the state ~o is assumed to be a 
canonical equilibrium state o~, with temperature /~-1 at an initial time to 
(which is later shifted away to - ~ by some limiting procedures). A major 
problem is then to clarify how far from the initial state ~o~ the time-depen- 
dent state ~p~ evolves and whether the "distance" of ~p, from ~o~ increases or 
decreases. Since the usual von Neumann entropy of the total system does 
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not change in the "unitary" time evolution of a dynamical system, it cannot 
be used for describing the dissipativity in the present context. What we are 
going to apply to this question is the notion of relative entropy (6"7) S(OI go) 
of two states g, and go. When the states are represented by density matrices 
(in a Hilbert space of an irreducible representation of the observable 
algebra) in such a way that 

go(A) = tr p+A (1.2) 

the relative entropy can be expressed as 

S(g, [ go) = tr p~ (log p~, - log p~) (1.3) 

[-The above notation for S(g, Igo) conforms to Ref. 7, but not to Ref. 6.] 
Under the same circumstances, the equilibrium density matrix is given by 

p+~(=-p~)=e fl(H--FB), e - ~ )  = tr e -p++ (1.4) 

in terms of the system Hamiltonian H, i.e., the unperturbed Hamiltonian. 
The expression (1.4) is valid, however, only for those Hamiltonian systems 
with discrete spectrum. For the study of irreversible processes it is necessary 
to adopt a more general class of states and dynamics that admit a con- 
tinuous energy spectrum. Hence, we replace the formulation (1.2)-(1.4) in 
terms of density matrices by that of the GNS representation associated 
with the KMS state of the observable algebra. With this understanding, the 
results to be given in the subsequent sections are outlined as follows: Since 
the time evolution of observables in 9,1 involves time-dependent forces X(t), 
the family of time evolution mappings on 9A does not form a one-parameter 
group {~,: t~ ~}, but forms a family of two-time indexed automorphisms, 
each member of which we denote by a ,+ , ( s , t+~) .  It operates on an 
observable A as well as on a state go satisfying the following relations: 

~s~t(A,) = At, go~= go, o ~ ,  (1.5) 

go,(A,) = go,(As) (1.6) 

a r + , o ~ + ~ = a ~ + ~  (chain rule) (1.7) 

~,+ s = Id~ ( - i den t i t y  mapping on 9,1) (1.8) 

- - ~ Accordingly, our main From (1.7) and (1.8) it follows that ~ , + : - a : + , .  
result in Section 3 can be expressed as 

f/ 
~t t =f i  ~o~ o ~,0+:(JA)" X(r) dv (1.9) 

0 

822/50/3-4-1l 
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where 

JA = i [n ,  A] (1.10) 

is the current associated with the observable A. By interpreting 
OJB(O:to~(JA) ) a s  the conjugate flux to the external force X, the integrand 
of (1.9) can be identified with the thermodynamic notion of entropy 
production. ~8) This is an analogue of the entropy production discussed in 
Ref. 9 in the context of an open system described by a dynamical 
semigroup of completely positive maps. 

However, the entropy production 4 P(t, to)==-flfpt(JA)" X(t) [=(d/dt )  
S(q),lc%)] is generally a time-dependent quantity depending on both the 
present time t and the initial time to, and its positivity characterizing the 
dissipativity of the system cannot be seen directly. In the linear response 
regime where the X dependence of the time development ~, ~ t0 is retained 
up to first order, the positivity is ensured by the additional ingredient of 
the Kubo  formalism, namely, the limiting procedure to ~ - o e  letting the 
external disturbance set in at the infinite past. By this procedure, the 
stationarity of the state q~, at t is realized automatically if the external force 
is periodic in time. Beyond the linear regime, however, this stationarity is 
not evident even in the limit t o ~ - o %  and considerations about  the 
mechanism of randomizing the fluctuation of the force are needed for the 
definiteness of the entropy production. In Section 4, we consider a broad 
class of external forces, namely those expressed by almost periodic functions 
of time, and establish the following results: 

1. If the external force X(t) is almost periodic, so is the entropy 
production 

P(t + t o, to) = co~(a,0 + t+ ,0(JA))" X(t) 

as a function of to with t fixed, to ~ P(t + t 0, to). Therefore, its average over 
to exists uniquely: 

if0 P(t) = lim dto P(t + to, to) (1.11) 
T O ~  0 --T O 

4 The apparent sign difference of P(t, to) from a = -(d/dt) S(p, IPa) l,-0 of Ref. 9 is simply due 
to the difference in the treated situations: Here in the response theory we are considering an 
"uphill" process toward a final nonequilibrium state starting from an initial equilibrium state 
~%, whereas Ref. 9 treats a "downhill" process with a nonequilibrium state p as its starting 
point whose final destination will be the equilibrium state p~. 
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2. If the long-time average /5 of P(t)  exists, then it represents the 
nonnegative entropy production for a stationary state: 

l;j 
/5= lim dtP(t)>~O (1.12) 

T ~  oo T 

In short, the relative entropy of a driven system may increase or decrease, 
but it increases on the average. 

In Section 5 we restate the result in the form of a nonlinear response 
version of the fluctuation-dissipation theorem. It will also be explicitly 
shown that the mean entropy production so defined reduces, in the linear 
response regime, to the power dissipation in the Kubo formula. 

2. PERTURBED D Y N A M I C S  A N D  THE RELATIVE ENTROPY 
F O R M U L A .  I. THE CASE OF THE D E N S I T Y - M A T R I X  STATE 

In order to illustrate the essence of the story, this section is devoted to 
a discussion of the relative entropy formula in terms of the familiar density 
matrix. We then proceed in the next section to remove its limitation 
by adopting a general framework which involves some mathematical 
terminology and techniques/We hope that such a presentation will make 
our derivation of the formula expository enough without losing its 
mathematical rigor. 

Let us consider the Schr6dinger equation for a quantum system with a 
Hamiltonian H, a self-adjoint operator acting on a Hilbert space -~0. When 
an external perturbation of the form (1.1) is switched on to the system, its 
time evolution will be governed by a unitary operator ~'(t, s) on -~o, 
defined as the solution to the equation of motion with an initial value at 
t = s as follows: 

0 
at  ag(t' s) = - i [ H -  A"  X(t)] ~(t ,  s) 

(2.1) 

~ z ( t = s , s ) = l  

The unperturbed Hamiltonian H (unbounded, in general) can be 
eliminated from this equation by taking the interaction representation: 
Define another unitary operator U(t, s) through 

ql(t, s ) =  e-itHU(t, s) e i~H (2.2) 

Then, we obtain 

a 
at U(t, s) = iA, .  X(t) U(t, s) 

U(t = s, s) = I 

(2.3) 

(2.3a) 
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and also 

where As is defined by 
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8s U(t, s) = -U( t ,  s) iA~" X(s) 

u ( t ,  s = t) = 

(2.4) 

(2.4a) 

As = eiSHAe i,H (2.5) 

The equation of motion for a density matrix p of the system is given as 
usual by 

dp/dt = lip, H -  A. X(t)]; p(t = to) = Po (2.6) 

whose solution is given by 

p ( t )  = ~ ( t ,  to) po~U(t, to)* 

=e imU(t, to)eit~ i~~ to)* eim (2.7) 

If Po is the canonical equilibrium state p~ of the unperturbed Hamiltonian 
H at the temperature /~-l given by (1.4), then, due to the stationarity of 
p~, (2.7) reduces to 

p(t) = e-imU(t,  to)P~ U(t, to)* eim (2.8) 

Let us put this density matrix p(t) in the form 

p( t )=e  ~F14 F(t)] (2.9) 

with an operator-valued free energy F(t)=F(t)*.  The operator nature of 
F(t) is due to the deviation of p(t) from the equilibrium, as can be seen in 
the following. From Eq. (2.8) together with (2.9), we obtain 

F(t) = ~- l e - imU( t ,  to)log p~ U(t, to)* eim+ H 

= e ~mU(t, t0)[F ~ + U(t, to)* HU(t, to) - H] 

x U(t, to)* eim (2.10) 

Note that [--. ] in the above expression is given by 

d 
F~+ftodr-~z [U(*, to)* HU(v, to)] 

= f ~ +  dr U(r, to)*[iH, A~" X(z)] U(r, to) 
o 

o 
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with 

~,0_ ~(JA)= ~ll(z, t o ) * [ i H  , A ] ~ ( z ,  to) 

= e-i~~ to)* eizHj A e-i~Hu(~, to)e it~ 

Thus, we obtain 

(2.11) 

log p( t )  - log p,  

[!5 = fl~u(t, to) o ~ , o ~ ( a ~ ) "  X(r) dz] ~'(t, to)* (2.12) 

and hence 

s(~p(,) I ~ )  : tr p( t )  [log p( t )  - log p , ]  

ft l =fl t r [ p ~ , o ~ ( J A ) ] ' X ( v ) &  
o 

ft t =fl tr[p(Z) J A ] ' X ( z ) d r  (2.13) 
0 

This is just the desired result in its density matrix version. (1~ 
As remarked in Section 1, however, the validity of the above version is 

restricted to the case where the Hamiltonian H has discrete spectra only 
[otherwise, the density matrices p~ and p( t )  do not belong to the trace- 
class operators in the Hilbert space -~0]. To get rid of this limitation, one 
should adopt the general algebraic formulation of quantum dynamical 
systems (s) where the notion of the modular automorphism group 
associated with a KMS state plays an important role. This is the subject of 
the next section. 

3. PERTURBED DYNAMICS AND THE RELATIVE ENTROPY 
FORMULA. II. THE GENERAL CASE 

Let us take up a C*-dynamical system consisting of a C*-algebra ~ of 
observables and of its one-parameter automorphism group {c~,: t ~ }  
describing the time development of the system. In this setting, a state 
means an expectation functional in general, pure or mixed, which is 
formulated mathematically as a positive linear functional on ~.I. In 
order to extend the notion of equilibrium Gibbs ensemble to a general 
infinite system where the familiar formula (1.4) is not valid, Haag et  aL (~1) 
extracted its essence in the form of the K M S  condit ion ~1,5,11) 

co~(A~t(B))  =co~(c~, /~(B) A) (3.1) 
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The state cot~ satisfying (3.1) for an arbitrary pair of observables A and B 
(precisely speaking, for those belonging to the dense subalgebra 9X~ of 
entire elements for the automorphism group {e,}) is called a KMS state of 
the C*-dynamical system (N, c~,) at the inverse temperature/3, or a ~-KMS 
state for short. While this is a direct consequence of (1.4) following from 
the cyclic invariance of the trace and ctt(B)= eitHBe itH, the condition (3.1) 
itself is free from the restrictions inherent in the trace formula (1.4). The 
profound meaning behind this simple condition has been brought to light 
from both the physical and mathematical sides; for instance, in discussions 
about reciprocity, (1) the fluctuation-dissipation theorem, (1'2) and the 
stability of the equilibrium state, (5) through its relation to the 
Hawking-Unruh effect, and, above all, in its essential connection to the 
Tomita-Takesaki theory for von Neumann algebras. (5) With regard to the 
last-named context, some points relevant to our discussion will be briefly 
explained in what follows. 

Starting from a /%KMS state co~ defined above, we now consider 
external perturbations on it and investigate the problem of how and to 
what extent the state changes. For this purpose, we need some standard 
machinery of quantum theory, such as a Hilbert space, operators on it, and 
so on. This is supplied by the GNS representation (.~, 7r, O, U,) associated 
with the KMS state o9~, where 7t: 9.I ~B( .~ )  is a representation of the 
C*-algebra 921 in a Hilbert space .~ with a cyclic vector f2 e .~, i.e., 

satisfying 

~(gA)~ = .~ (3.2) 

co~(A) = (f2, 7z(A) so2) for VA 6 9.1 (3.3) 

{U,: t e R} is a one-parameter unitary group in .~ implementing the 
(unperturbed) dynamical automorphism group {c~,}: 

~(~,(A)) = Urn(A) U*; U,~=(2 (3.4) 

The special situation arising from the KMS condition (3.1) is the 
separating property of the cyclic vector .(2 for the von Neumann algebra 
9J / -  rc(gA)" [ = the closure of rc(9.I) with respect to the weak operator 
topology in B(.~)], 

xO=O for x e ~  =*-x=0 (3.5) 

which is equivalent to the cyclicity of g2 for 9~' (= the commutant of 
931- {yeB(.~) ;  [x, y] = 0  for VxegJl}): 

9X'f2 = .~ (3.6) 
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On the basis of (3.2) and (3.6), the following two (closable) antilinear 
operators S and F are defined in ~ by the equations 

Sx~2=x*g2 x~93l (3.7) 

Fx'f2= x'*s x' ~93l' (3.8) 

Through the polar decomposition of (the closures S and F of) S and F, 

g = J A  t/2 (= r* ) ,  F = A ' / Z J ( = S  *) (3.9) 

a strictly positive self-adjoint operator A ( - S ' S > 0 )  and an involutive 
antiunitary operator J (i.e., j 2 = 4 ,  J l =  j , )  are defined on ~5 and are 
called, respectively, the modular operator and the modular conjugation 
operator. The important properties about A and J are 

(i) Ait931A-i'=931; (ii) J~J=931 '  (3.10) 

The property (i) allows us to define an automorphism group {a,: t  e ~} on 
93l, called the modular automorphism group, by 

93~ ~ x ~-'+ ff t (x)  = zjitxA it e ~J~ (3.11) 

Using the property (ii), (3.7), and (3.9), one can show that this 
automorphism group satisfies the KMS condition with f l = - 1  for the 
extension &~ of o)e to the yon Neumann algebra ~ [ =~(9.1)"]: 

&z(xa,(y) ) = d)B(a , + j y )  x) (3.12) 
where 

&a(X)=(f2,  x f2)  for xe93~ (3.13) 

Since the automorphism group satisfying the KMS condition for a given 
state is proved to be unique, we obtain 

~,(x) =- U, xU* = o _,/a(x) = A -i'/axA ~'/~ (3.14) 

for x e 9)l. Therefore, the operator H a defined by 

Ha__ _fl-1 logA or A = e  -a~p (3.15) 

can be thought of as a Hamiltonian in some extended sense? From this, 
5 Due to JHflJ= -Hfl following from (3.7)-(3.9), Hp has positive and negative spectrum sym- 

metrically. For the Hamiltonian system with discrete spectrum as in Section 2, the GNS 
representation is given by the left multiplication of operators in -~o on the Hilbert-Schmidt 
class operators .~= {aeB(.~0); tr 1<2< oo}: x(A) a=Aa(aE~);  s =p~=e-an/tre ~ .  
Here J and A are given, respectively, by Ja=a* and Acr=e-aHae pH, which implies 
H~= H - J H J .  For the general infinite systems where the "genuine" Hamiltonian H is 
ill-defined in the GNS representation space ~ of a KMS state, this decomposition becomes 
meaningless, while H~ itself survives taking the role of a Hamiltonian. 
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one can reasonably expect that the role of the equilibrium density matrix 
(1.4) will be played by the modular operator A. 

Equipped with the above machinery, we extend the density-matrix ver- 
sion of the results in Section 2 to the general case in the following way. 
Since the von Neumann algebra ~ = ~(9.I)" is the completion of ~(9.I) with 
respect to the weak operator topology, any (Hermitian) operator in 9J~ can 
be regarded as a generalized observable obtained from those belonging to 
the original observable algebra 9/ through some limiting procedure. 
Furthermore, 9 / is  faithfully embedded in ~ by the GNS representation 
due to the faithfulness of the KMS state ~0~: 

~(A) = 0  ~ [ I ~ ( A ) ~ l l 2 = c o ~ ( A * A ) = O ~ A  = 0  

Therefore, unless the external force is so strong that the perturbed state ~p, 
gives rise to the GNS representation ~ ,  disjoint from our starting one ~, 
our physical system can be treated in the fixed Hilbert space ~ by 
regarding the von Neumann algebra 99l on ~ as the algebra of 
observables. 6 Thus, we replace notions such as the dynamics ~, and the 
KMS state co s formulated in the general context of C*-algebra 91 with 
those, 

fCt( " ) = Ut(" ) Ut* = eitH~( " ) e itH~ 

&~(. )=  (s163 etc., extended to the yon Neumann algebra 9J~. With this 
understanding, we can neglect the distinctions between a, and ~t, between 
~ot~ and &~, and between A (~gJ) and ~z(A) (~gJ~). Therefore, the caret and 

are omitted henceforth. 
Now, the perturbation of the dynamics at by the external force (1.1) 

with each A i belonging to 9Jr can be formulated by the differential equation 
governing the time-inhomogeneous dynamics as ~ t, 

d 
~s+ ,(B) = ~ t ( i[Hp - A.  X(t), B3) (3.16) 

where B should belong to the domain D(6) c ~J~ of the derivation 

6 - d ~ ,  = i [ H ~ ,  .] 
t = 0  

6 It is important  to note that  the von Neumann  algebra 9)l of observables is a proper sub- 
algebra of the algebra B(.~) of all bounded operators in 9,  as is easily seen by observing 
that, if every operator in B(.~) were an observable of the system, ~o~ should necessarily be a 
pure state, in contradiction to the mixture character of Gibbs states. 
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As long as each X~(t) is a bounded continuous function on ~, the solution 
C~s~, of (3.16) with the initial condition e ~ , = s = I d ~  is uniquely deter- 
mined and is given by 

with 

~ t(B) = ~_,[  U(t, s)* cq(B) U(t, s)] (3.17) 

U ( t , s ) - ~ +  i n dt~. . ,  dtn~,~(A)'X(tl) . .-~, ,(A)-X(tn) 
n = l  

The series on the right-hand side of (3.18) converges uniformly in every 
finite time interval of s and t with respect to the uniform operator topology 
of ~J~, and hence also to the strong and weak operator topologies. Thus, we 
have 

U(t, s) e 93l (3.19) 

Aside from the difference between H in Section 2 and H~ here (in the sense 
of footnote 5), the results (3.17) and (3.18) become formally identical to 
those in Section 2 by the following identification: 

2 s ~ ( A )  = ~//(t, s)* A~ s) (3.20) 

~ll(t, s) - e-itneU(t, s) e isn~ (3.21) 

Thus, the chain rule for ~(t ,  s), 

~ ( t , s )  all(s,r)=~ q l ( t , s ) - ~ = q l ( s , t )  (3.21 

and the one [Eq. (1.7)] for ~s~, follows from that for U(t, s). Although 

o~,(~l ) = ei'He~lJ~e-itnl~ = 3 i t / t 3~J~A it/tg -~- 

and also 
c~ s ~ ,(~l)l) = ~(t ,  s)* 9J~'(t, s) = 9Jl 

the unitary operator exp(itH~) itself does not belong to 9Jl, nor does 
~(t ,  s). In any case, the time evolution of the state ~0~ starting from q~0 = co~ 
can now be given by 

cpt = <.,Oto o ~X~o ~ t 

= (2Jfl(O{/o l(V(t , to)* o~,(.) U([, to))) 

= (e-i 'n~U(t,  to)O, ( . . . ) e  im~U(t, to) O ) 

= (qs ,  ( . . . )  q s )  (3.22) 
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with 
05t ~ e-i tHt~v(t ,  to) ~ = o~_~( U( t, to) ) f2 (3.23) 

To get the expression for the relative entropy S(~p~l~oa) corresponding 
to (2.13), its definition (1.3) should be extended into a form independent of 
density matrices. Such a generalization has been achieved by Araki (6) in the 
context of von Neumann algebras by virtue of the notion of relative 
modular operator: If ~ and O are both cyclic and separating vectors 
belonging to one and the same natural positive cone, 02J3)'7 then the relative 
entropy S(~blq~) between the two states ~ b ( - ) - ( ~ , .  ~ )  and ~0(.)--- 
(05,. 05) is given by 

S(~ [ ~p) = ( 7  t, log A ~,~ ~ )  ~>0 (3.24) 

which is always nonnegative and vanishes if and only if ~ = ~o. The relative 
modular operator A e,~ is defined, similarly to the definition (3.7)-(3.9) of 
the modular operator A, through the polar decomposition of Se, e and Fe.e 
defined by 

Sv,,ex05 = x* ~ (x ~ 9Jl) (3.25) 

Fe.ex'05 = x'* ~P (x' e 9Jl') (3.26) 

Ae, e - S * , e S e ,  e [ = (F; ,vff ,~,e)~3 (3.27) 

Sgtqs---~l  A1/2 * , ,, e , e -  e,e (=V~,o,) (3.28) 

above The definitions of S, F, J, and A in (3.7)-(3.9) are special cases of the 
ones, A~ ,~ , -A , e  and J~',~=~J~t', etc., for g t=O:  A = A a ,  J = J a ,  etc. Thus, 
what is needed now is the expression for A e;,a in terms of the external force 
X, where 0', is the representative vector of the state q0 t determined uniquely 
by the requirement that it should belong to the same natural positive cone 

~o  =- { x J o x J ~ ( 2 ;  x G gJl } 

that (2 does. In view of (3.23) with e_,(U(t, t o ) ) -  u e g J /due  to (3.19) and 
o f j e ( u ) -  J~,uJt? E 9J~', the vector 05; is given by 

05't ~ J Q u J ~  05t =- uJa( u ) g2 (3.29) 

7A natural positive cone N = ~ a  associated with O is defined by ~'-= {xJxJ~;xe?Ol} = 
~ +  s and satisfies the following properties: (1) A'IN = ~ for Vt e R, (2)f( log A ) ~  c 
for Vf: positive-definite function, (3) J ~ = ~  for V~e~,  (4) xJxJ~7~c.~ for VxE,~', 
(5) (4, r/)/> 0 for V~ e N ~ r / e~ ,  (6) for any normal (i.e., a-weakly continuous) state q~ of 
~Jl, there exists a unique ~ e ~  satisfying q~=(~ , -~ ) .  If ~E.~ is another cyclic and 
separating vector, the definitions of J, A, and N can be repeated with ~ replaced by ~, the 
results of which are denoted by J~, Ar and N~. Then, we have (7) ~ e ~b ~ ~ =.Ca and (8) 
for any cyclic and separating vectors ~ and q, there exist unitary elements U~,, e 9Jl and 
U'e,~?Ol' such that ~ =  U ~ , ~  = U ~ , ~ .  
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Then the relative modular operator A~;,a is determined as follows. The 
definition (3.25) for S<,a combined with (3.29) yields 

S #;,oXf2 = x*crp' = x*ujo( u ) (2 = jo( u )( u*x )* f2 

= j o ( u )  Sou*xf2 = [jo(u)  Sou*] x(2 (3.30) 

for any x e ~ .  Due to the cyclicity of f2 for 9J/, this implies 

g+;.o =jo(u) Sou* (3.31) 

and hence (3.27) gives 

~@i,O = U J O U *  = e-BUHl~ u* 

Thus, we obtain 

s(~0, I~%) = ('P',, -~uH~u*q,',> 
= --fl(ujo(u) f2, uHau*ujo(u ) [2) 

= - f l ( Q ,  Jou*JoH#JouJo(2)  

= fl(f2, u*H~uf2) 

= fl(q},, H ~ , )  

Subtracting fl(D, H e r ' 2 ) = 0  from the above, we arrive 
generalizing (2.13 ): 

at 

S((p, X o)a) = fl( ( (2, u'Haul2 ) - ( f2, HAD)) 

(3.32) 

(3.33) 

the result 

= fl(f2, U('c, to)* eimeHae-i*H~u(~, to) f2)I~2'to 

f, d =fl dr-d-~z(f2, U(z, to)* HaU(z, to)f2) 
o 

=fl s U(z, to)* [iH a, c~(A)" X(z)] U(z, to) f2 ) 

= B !,'o d,<O, ~, ,o(V(,, to)* ~,.(a,)v(~, ,o))o> .x(~) 

= fl f[o dr qg,(J.4)" X( "r ) 

d 
e(t) =-~ s(~o, I~%) =/~o,(J~). x(t) 

which is valid if each Ai belongs to Dom([iH~,. ]). 

(3.35) 

(3.34) 
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Finally, it may be instructive to note the relation among the 
"operator-valued free energy" F(t), Ae, o(=A~, ,a) ,  and the modular 
operator A~; [ = j a ( u * ) A e , j e ( u ) ]  associated with the state ~o,. According 
to Araki, (6) a state 0 h obtained through a perturbation of a state 0 by a 
relative Hamiltonian h e 9Jl is defined to be the state whose Connes cocycle 
relative to 0 is given by 

D h. -- Ait -it ( O .DO) ,= ~,(h),q, Av  

oO l 

= ~ _ o i ' f o d t , ' " f o ' - l d t .  a ~ ( h ' " ' a ~ '  h) 

= exp lit(log A v + h)] exp( - i t  log Av) (3.36) 

Here, W and W(h) are, respectively, representative vectors of 0 and O h. This 
implies that the relative modular operator Av(h),v is given by 

log Av(h),v = log A v + h (3.37) 

and according also to Refs. 12 and 13, that the cyclic and separating vector 
V(h) belonging to the natural positive cone ~v of �9 is uniquely determined 
a s  

~(h)  = A~/2 ~v= { e x p [ ( l o g A v + h ) / 2 ] } V  (3.38) ~ ~ ' ( h ) , ~ ' =  

The modular operator Av(h) associated with this vector is given by 

log Av(h) = log Av + h - J v h J v  

= log AV(h),V -- J v h J v  (3.39) 

The relative entropy S(0hl0)  is now given by 

S(0h I 0) = 0h(h) (3.40) 

Applying these results to our case with the identifications 

we get 

0 = eJa, V = 12; 0 h = q),, V ( h )  = 4', (3 .41)  

h = log A ~;,a - log A 

= - f l~_,(U(t ,  to) ) Hac~_,(U(t , to))* + flH a 

= fie-im'U(t,  to)[U(t, to)* H a U(t, to) - Ha] U(t, to)* e i'~I€ 

= flCttol ' { f[o dz ctto~( [ iHr A " X(r ) ] ) } (3.42) 
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If the Ai belong to Dom[iH~,  -] (and the Xi are LLfunctions), h belongs to 
9J/. By comparing (3.42) with (2.12), we can identify the relative 
Hamiltonian h in our case with the [difference of~ operator-valued free 
energy F(t)  Eand the c-number equilibrium free energy Fa, if it is well- 
defined even for a general infinite system~ multiplied by/3: 

h = ~F(t) ~-f lF~? (3.43) 

A ~;,o = exp{ - f l ( H ~  - F(t)  ~ + F ~ ) }  (3.44) 

The modular operator Ae; associated with ~b; is given by 

A~; = exp{ - /~[H~ - F(t)  + J o F ( t )  Jo ]  } (3.45) 

Substituting (3.42) into (3.40), we obtain the same expression for the 
relative entropy S(qhl e)~) as (3.34), as should be the case. 

4. A L M O S T  P E R I O D I C  P E R T U R B A T I O N S  

An almost periodic (a.p.) function f on the time axis N is a continuous 
function admitting a uniformly convergent series expansion 

N 

f ( t ) =  lira ~ ane i~~ (4.1) 
N ~ o o  

n ~ l  

(D 0o in terms of a countable set of frequencies { n},=l.  The set A P  of a.p. 
functions is a commutative C*-algebra such that the following properties 
are satisfied: 

(i) A P  is closed under the algebraic operations of addition (+ ) ,  
multiplication (-), and complex conjugation (*), defined as usual by 

( f l  + f 2 ) ( t )  = f l ( t ) +  f2(t), (fl  �9 f2)(t) = f l ( t )"  f2(t) 

f * ( t )  = f ( t )  

(ii) A P  is complete with respect to its uniform topology, i.e., the limit 
of a uniformly convergent sequence of a.p. functions is also a.p. 

(iii) A P  is invariant under the translations and the inversion in 
defined by f~(t) =- f ( t  - s), r  =- f (  - t). 

(iv) For Vf~AP,  the mean value, 

f ~  lira f ( t )  dt 
T ~ oe - r  

exists, and f =  0 for f~> 0 implies f -  0. 
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Currently the interest in almost periodic functions has revived, 
especially in connection with the problem of disordered states/14) Here, we 
use this notion to control the fluctuating behavior of the entropy produc- 
tion driven by that of the external force. The stationary-state aspects 
should emerge from this fluctuation through the time average and/or 
limiting procedure. Now, we denote by P(t, to) the entropy production 
defined as the time derivative of the relative entropy S(cpt[q~,0=c~B) , 
namely, 

P(t, to) = fltpt(JA)" X(t) =/3co~(~, 0 ~ ,(JA))" X(t) (4.2) 

Instead of taking directly the limit to ~ - o o  of infinite past, we consider 
the averages of the function P,o(t) = P(t + to, to), first over the initial time 
to, s and then over the final time t, through which the stationarity as well as 
the positivity of the entropy production is attained. The precise results can 
be stated as follows: 

I. When the external force X(t) is a.p., the function Pro(t) is also a.p. 
with respect to to, as a consequence of which its average over to exists 
uniquely: 

P ( t ) -  lim 1 fo 
- -  dt o P(t + to, to) (4.3)  

vo-o~ To -to 

II. Although the long-time average of P(t)  is in general not guaran- 
teed to exist uniquely, the uniform boundedness of P(t, to) 

[P(t, to)[ ~<~ [IJ~[[ [[Xill~ (4.4) 
i 

T ~ tending to ~ ,  T , ~  ~ ,  such assures the existence of a sequence ( , ) ,=1 
that the sequence 

converges to a limiting value P, which is nonnegative: 

'? 
P =  ~oolim ~ dtP(t)  

1 lim dtoS(cPro+,olgto=CO~)>~O (4.5) = l im ~ v0~ 0o ro n ~ c G  

s If the limit at t0~ --oo exists, then the initial-time average l imr0~ (1/To)~~ also 
exists, and is equal to the former, but the converse is not true. The authors owe to Prof. 
J. Bellissard the precise formulation of this idea to replace the infinite-past limit by the 
initial-time average. The problem of controlling the fial-time average is under investigation 
in collaboration with him. 
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Each such limit P represents the nonnegative entropy production in one of 
the (possibly many) stationary states characterizing a dissipation of the 
system. 

Now, Bochner's theorem 9 to characterize the a.p. function is our basic 
tool for establishing the above result, and it can be stated as follows: A 
bounded, continuous function f ( t )  defined on N is a.p. if and only if the 
family ~ = {f~.; f~(t) - f ( t  - 2), 2 ~ ~ } of translates of f is precompact in 
the uniform topology defined by the sup-norm IlflJo~ = s u p , ~  ]f(t)l, 
namely, any sequence {f~,n}n C ~ contains a convergent (i.e., Cauchy) sub- 
sequence with respect to II'll~. Denoting the entropy production by 
P(t, to; X) to make explicit its functional dependence on the force X(t), we 
use this theorem to deduce the almost periodicity of the function 
to~--~P(t+ to, to; X) in two steps: 

1. Covariance property of P(t, to; X): The effect of the simultaneous 
time shift in the initial and final times is absorbed in the time shift 
X(t) --. X~(t) = X(t - 2~ of the external force X: 

P(t - 2, to - 2; X) = P(t, to; X~) (4.6) 

2. Uniform continuity of P(t, to; X) in X with respect to the uniform 
topology [-for each fixed (t, to)]. 

It is then easy to verify our claim, almost periodicity of the function 
to~--~P(t+to, to;X ) with t fixed, in view of 1 and 2, together with the 
following two general results: 

(a) 

(b) 

Thus, what remains now is to prove statements 1 and 2. 

Step 1. From Section 3, we obtain 

~,0~,(JA) = c~_,0(U(t, to)* ~,(Ja) U(t, to)) 

with 

2 ~ X;. is continuous in the uniform topology if and only if X is 
uniformly continuous, which is the case for an almost periodic X. 

A uniformly continuous mapping maps a precompact set into 
another precompact setJ 16) 

(4.7) 

U( t, to) = T exp [i fto dz ~(  A ) . X(v )] (4.8) 

9 For a brief survey see, e.g., Appendix 1 of Ref. 15. 
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This satisfies 

U(t-2, to-2)=Texp i dr cq(A) �9 X(z) 
o 2 

= Texp li f(odr ~z-~(A)" X(z-2)  ] 

=~_;~{Texp[if[odreT(A)'X~(z)l } (4.9) 

Thus, U(t, to) with its X dependence made explicit as U(t, to; X) satisfies 
the following covariance condition: 

U(t-2, t o - 2 ; X ) = ~  ~(U(t, to;X~)) (4.10) 

Therefore, we obtain 

~ , o _ ~ _ ~ ( J A )  = ~ ,o(U(t, to; X~)* ~,(JA) U(t, to; X~)) (4.11) 

and hence [-(4.6)] 

P( t -  2, to- 2; X)= P(t, to;X;. ) 

Step 2. Since the unitary operator U(t, t o ; X ) =  U(t, to) defined by 
(4.8) satisfies the equation 

U(t, to; X) = "0 + dr ic~(A) �9 X(z) g(z, to; X) (4.12) 
0 

we obtain 

tl g(t, to; X ) - g ( t ,  to; Y)N 

!)o dr cz,(A) = �9 {X(z) U(z, to; X)--  Y(z) U(z, to; Y)} 

<<. & L[IU(~,to;X)-U(r, to;Y)l l+M~,l[U- Yill~ (4.13) 
o i 

where M = m a x i  []Ai]l and L = M Z i  IlXill~ Applying Gronwall's lemma 
"solving" the inequality 

O<.p(t)<~ dr[-Lp(r)+q(r)] (vt~> to) 
o 

with L~>0 and q(t)>~O in favor o fp( t )  as 

p(t) <. dr q(z) e L(t ~) 
o 
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we obtain from (4.13) 

M L't IlU(t, to;X)-U(t,  to;Y)ll<~--E(e ' -'~ - 1) ~ tlX~- Yt]loo (4.14) 
i 

This asserts the uniform continuity of U(t, to; X) in X with respect to II H oo. 
The desired conclusion, uniform continuity of P(t, to; X) in X, follows from 
this result together with the formula 

P(t, to;X)=fl(U(t, to; X)12, c~,(aA) U(t, to; X ) f 2 ) " X ( t )  (4.15) 

5. RESULTS A N D  D I S C U S S I O N  

We have formulated the mean entropy production /5 as the time 
average of P(t + to, to) over the initial and final times to and t: 

/5= limn~oo -~ff"dt  r0+ ~ -T001im l fO_T0 dt~176176 

;~ 
= nlim ~ __Tnr0~T0_r01 lim --1 dtoS(rPT,,+tolgoto=~o~)>~ 0 (5.1) 

The positivity of this expression stems from the fact that P is essentially the 
relative entropy per unit time of the stationary state realized through the 
averaging over the initial time. The limit of the second average over t, 
however, may not be unique in general, reflecting the possible occurrence 
of multiple stationary states in the nonlinear response. Furthermore, one 
should be able to distinguish between a true nonequilibrium stationary 
state with P > 0 and a quasiequilibrium state with/~ = 0, different from the 
starting KMS state. These problems will be important issues for future 
investigation. Assuming that a limit of such an average exists, we get 
another expression for P, 

/5=/? ~ ]*(og . ) .~(eo . )  (5.2) 
n = 0  

where R(co.) is the Fourier coefficient of the almost periodic X(t), 

x(t)= ~ ~(~o)e i~ (5.3) 
n = 0  

and JA(O).) is defined by 
1 er  1 ro 

J dto A(con) = li~rnoo rli~m~ T Jo dt~oo - To 

X e - i,o~(, + ,0)oga(~, ~ ~,  + ,0(j A ) ) (5.4) 

822/50/3-4-12 
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This result retains a full nonlinearity in the force X and still allows a 
physically meaningful interpretation of "entropy production" familiar in the 
context of thermodynamics. (tT) 

A formal structure of the relationship between dissipation and 
fluctuation in a quantum dynamical system, well formulated at least in the 
linear regime, (1 3) can be seen to hold in the present framework as follows. 
The rate at which the mechanical work is done on the system by the 
external force is equal to the rate of energy change in the system, 10 

_d d 
= ( 5 . 5 )  dt 

which directly follows from (3.33) (3.35) and from 

([ ]) X(t)'--~t qo,(A)=i(Pt H r  AgX~, ~,AjX j 
k j 

= q),(JA)" X(t) (5.6) 

Noting that the effect of the external force is to reduce the entropy of the 
system (to produce more order in the system), we can interpret 

d _fl d (45, (system Hamiltonian)q~,) --fl--~ (~" He~') = dt 

m As noted in footnote 5, H~ cannot be directly identified with the energy of the system, but 
( ~ , ,  H t ~ , )  and its time derivative (d/dt)(q~t, H~q~) can be interpreted properly as the 
energy gain of the system due to the work done by the external force and the rate of the 
energy change in the system, respectively. This can be easily seen in the case of the density- 
matrix formalism with Ht~ = H - J H J  valid: 

= {Q, c(_,(U(t, t o ) )* (H-JHJ)  c~_,(U(t, to) ) (2} 

= ( ~ , ,  H(/),) - (g2, H Q )  =ztE; 

d d 

In this context, it is interesting to note that the positivity of this energy gain, 
A E =  (1/fl)S(~otl c%)/>0, can also be understood as the p a s s i v i t y  uS) of the KMS state c%, 
because (3.34) can be rewritten as 

(qb,, H # ~ t )  = (1/fl) S(q),[ ~%) 

= (~-2, (U(t, to)* Ht~U(t , to ) -H~)s  ) 

= co~(i3(U(t, to)* ) U(t, to))>10 

with U(t, to) E ~//(gJ/) and because the KMS condition is equivalent to the inequality (s) 

--iflco(A*b(A)) >~ e)(A*A) Iog[oo(A*A)/o(AA*) ] 
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(=  the rate of energy dissipation divided by kT) ~~ as an entropy change 
due to the contact of the system with the environment and we denote it as 
[(d/dt) S]~xt (extrinsic entropy production), 

/ d  \ d 
t~-7 SJext ~- - / ~  (<b,, H ~ , >  

(5.7) 

On the other hand, the intrinsic entropy production [(d/dt) S]~.~, intrinsic 
to the system, can be identified with the relative entropy production so far 
discussed: 

(J,=),n,' 27 s(~0, I~,~) (5.8) 

Then, (5.5) can be put into the form 

d d S 

which is also equivalent-to the equality 

q),([ig~, A ] ) =  (o,([iF(t), A]) (5.10) 

In the conventional formulation in terms of density matrices, the origin of 
this equality is easily understood as the invariance of the system entropy 
(-tr p log p) under the unitary evolution. In the general case, it derives from 
the equality 

log A| - [ J [ H p - F ( t ) + J ~ F ( t ) J ~ ]  ~ ; = 0  (5.11) 

and from J~F(t)J~ ~ 977l'. In view of the expression for the operator-valued 
free energy F(t) [(3.42) and (3.43)], the relation (5.10) can be further 
rewritten as 

(JA }(t) =- cp,(EiH,, A]) 

(E st ]) ,0 = ~0t i d~ ~,+~(JA)" X(r), A 
0 + - - ~  

= lira dre~<~-')c~([ic~ ~ ( J A ) ' X ( r ) , ~  ~+, (A)] )  (5.12) 
a ~  + 0  - - a o  

In the final expression here, we have conformed to the conventional scheme 
of the "adiabatic switching" procedure, taking the infinite-past limit 
to ~ - oo first in the presence of a convergence factor e =(~- ') in 3{, and then 
removing it through the limit of e--, +0. Although the latter limit is 
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difficult to control, in contrast to the initial-time averaging, this scheme 
makes it easy to see that (5.12) gives a generalization of the Kubo formula 
in Ref. 1. Namely, it reproduces, in the leading order of X, the following 
well-known formula in linear response theory: 

( J ~ ) ( t ) =  lim it dre~(+-t )~~ Ai])XJ(~) 
e ~ + 0 J  oo j 

;o + ;2 = lim d r e  -'~ d 2 ~ o ~ ( ~ + _ ~ ) . ( J ~ ) J J A ) X J ( t - z )  (5.13) 
e ~  + 0  j 

The dissipative aspect in this context has been exhibited in Ref. 1 as the 
positivity of the transport coefficient matrix, by relating the kernel 
functions in this integral representation (5.13) to the current-current 
correlation functions [see (5.15) below]. From the present standpoint of 
general nonlinear response theory, it should be attributed to the positivity 
of the mean entropy production discussed so far. By combining the latter 
with the equalities (5.10) and (5.12), we obtain 

P =/~(aA)(t)" x(t) 

= fi(d/dt)(qs, ,  Heqb, )  

= f l y _  drooa([ic+ . . . .  (,IA)'X(+),C~ ~_+,(3A)'X(t)])>~0 (5.14) 

where the bar denotes the long-time average over t. As a formula describ- 
ing the general relationship between the dissipation of energy and the 
current fluctuations, this can properly be taken as a nonlinear 
generalization of the fluctuation-dissipation theorem. From this viewpoint, 
it would be instructive to see to what form (5.14) reduces in the linear- 
response regime. Substituting (5.13) into it, we obtain 

' ; ( ; o f :  P = 8  l i m - -  at dr a2 
r T~ oo T 

x y. ++(o~.+ ,~.(j~,) J~) x ; ( t -  +) x'(t) 
i , j  

=++ fo'++ t,J 

'#  x lira dt X~(t - r) Xi ( t )  
T ~ oo - 'T 

= fi ~ o)21 tanh ~ 2  ~ Xi(co.)* L ~ ( c ~ ) X J ( ~ )  
n = 0 z,j  

(5.15) 
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where the sum over frequencies {~on} is taken only for those with ~on/> 0 in 
view of the reality condition of X(t):X(ogn)*=X(--~On). The coefficient 
matrix {L0.(~o,) } defined by 

f ~  e (.ofl({o~z(J),JJ}) LU(c~,) =- dr io~,~ i 
c ~  

= L A o ~ . ) *  = L i j ( - ~ o . ) *  

is easily seen to be positive, and hence the expression (5.15)just agrees 
with the power dissipation (divided by kT) (1) for a linear dissipative 
quantum system. 
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